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ABSTRACT Global warming accelerates permafrost degradation, compromising the reliability of critical
infrastructure relied upon by over five million people daily. Additionally, permafrost thaw releases
substantial methane emissions due to the thawing of swamps, further amplifying global warming and climate
change and thus posing a significant threat to more than eight billion people worldwide. To mitigate this
growing risk, policymakers and stakeholders need accurate predictions of permafrost thaw progression.
Comprehensive physics-based permafrost models often require complex, location-specific fine-tuning,
making them impractical for widespread use. Although simpler models with fewer input parameters
offer convenience, they generally lack accuracy. Purely data-driven models also face limitations due to
the spatial and temporal sparsity of observational data. This work develops a physics-informed machine
learning framework to predict permafrost thaw rates. By integrating a physics-based model into machine
learning, the framework significantly enhances the feature set, enabling models to train on higher-quality
data. This approach improves permafrost thaw rate predictions, supporting more reliable decision-making
for construction and infrastructure maintenance in permafrost-vulnerable regions, with a forecast horizon
spanning several decades.

INDEX TERMS Permafrost thaw, climate change, physics-informed machine learning framework.

I. INTRODUCTION
A defining characteristic of the Arctic environment is

seas. Collectively, these three types of permafrost cover
approximately one-quarter of the Northern Hemisphere’s

perennially frozen ground, or permafrost, which refers to any
subsurface material that remains frozen for more than two
consecutive years.

Permafrost occurs in diverse environments, including land,
high mountain regions, and even the shelves of certain Arctic
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land surface, spanning around 16.7 million km? in Eurasia
and 10.2 million km? in North America [1]; see Fig. 1 for
further details.

Currently, permafrost underlies nearly 65% of Russia,
50% of Canada, and 15% of the United States, including
about 80% of Alaska [2]. This region supports over 1,100
permafrost settlements [3], home to approximately five
million people. A significant share of critical infrastructure is
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built on permafrost [4], including highways, railways, oil and
gas pipelines, and nuclear power plants. The stability of these
structures is increasingly threatened by permafrost thaw [3],
[5], [6], [7], leading to increased risk for technological
catastrophes.

Global warming leads to higher ground temperatures,
promoting permafrost thaw and deepening the active layer.
These changes negatively affect infrastructure stability by
reducing the bearing capacity of building foundations [8], [9],
[10], [11], widely supported by empirical evidence [8], [10],
[11], [12].The economic consequences of permafrost thaw
are substantial: the total direct cost of lost infrastructure in
North America by the end of the 21st century is projected to
exceed $5 billion [6], [7], [9], [12], [13], [14], [15], [16].

Furthermore, permafrost thaw contributes to the formation
of gas emission craters, which release significant quantities
of methane and other gases into the atmosphere [17], [18].
A particularly concerning phenomenon is the permafrost
carbon feedback, where large carbon deposits stored in
frozen soils are released during thawing, further exacerbating
climate impacts on ecosystems [19], [20], [21], [22], [23].

Multiple factors influence permafrost dynamics, with
active layer thickness (ALT) and mean annual ground
temperature (MAGT) serving as key thaw indicators. The
active layer, which thaws in summer and refreezes in winter,
has a maximum seasonal thaw depth that defines ALT. While
these thermal parameters are critical, other properties—such
as soil texture, porosity, and excess ground ice content—also
play a significant role in determining permafrost stability.

In this study, we define MAGT as the temperature
at a depth where annual temperature fluctuations remain
below 0.1° C. This operational definition is widely used
to approximate permafrost thermal stability, though the
measurement depth may vary depending on the study context.

A. GAP IN STATE-OF-THE-ART AND ITS IMPORTANCE
Developing a higher-fidelity model for mean annual ground
temperature (MAGT) and active layer thickness (ALT)
by combining domain-specific physics-based models with
machine learning is the central focus of this paper. The
complexity of permafrost physics and the limited availability
of data make permafrost analysis particularly challenging.

Conventional physics-based studies on permafrost degra-
dation typically link a limited set of climate parameters,
primarily air temperature and precipitation, to ALT and
MAGT. In contrast, AI/ML models can seamlessly incor-
porate additional complex information, such as soil and
vegetation properties, complex landscape characteristics,
and infrastructure development. However, machine learning
models often have excessive data requirements unless they
incorporate strong priors or domain knowledge [24].

In this paper, we explore the benefits of integrating
physics-based models with machine learning algorithms,
leading to arguably more robust and accurate predictions.
Despite numerous studies on physics-informed machine
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learning in the broader context of climate risk assess-
ment [25], [26], the problem of permafrost thaw has
remained largely unexplored. Motivated by the challenges
outlined above, this study is driven by the following research
questions:

« RQ1: Does enriching a gradient-boosted tree model
with analytic features from the Kudryavtsev equilibrium
solution lower the prediction error for both mean-annual
ground temperature (MAGT) and active-layer thickness
(ALT) compared with a climate-only baseline?

« RQ2: How does the same hybrid model perform relative
to the stand-alone Kudryavtsev model when driven by
identical atmospheric forcing?

B. CONTRIBUTION: BRIDGING CRITICAL GAPS

This paper introduces a physics-informed machine learning
approach for permafrost thaw prediction, addressing critical
challenges posed by global warming. By integrating physics-
based model outputs and key nonlinearities into machine
learning, we enhance interpretability and overcome the
data limitations of purely data-driven models. This fusion
enables more accurate predictions of mean annual ground
temperature and active layer thickness, crucial for assessing
permafrost stability.

The key contributions of this paper are as follows:

« arobust and accurate prediction framework: our method
seamlessly integrates physics-based permafrost models
with machine learning, ensuring reliability through
physical constraints;

« state-of-the-art accuracy: the combined approach signif-
icantly outperforms existing pure ML or pure physics
models, improving permafrost thaw forecasts for better
risk assessment;

« comprehensive empirical validation and uncertainty
quantification: the model is rigorously validated with
Circumpolar Active Layer Monitoring (CALM) data,
incorporating uncertainty estimates for enhanced confi-
dence.

The structure of this paper is as follows. The next section,
“State-of-the-Art,” highlights key advances in permafrost
modeling, including an exploration of existing physics-based
models. Among these, one of the simplest yet most powerful,
the Kudryavtsev model [27], is discussed in ‘“‘Materials
and Methods,” along with its integration into machine
learning. The “Data’ section provides a detailed description
of the input data, which is crucial for machine learning
performance. Finally, we present the empirical study results
in the “Results” section.

Il. STATE-OF-THE-ART: SURVEY

A. EXISTING METHODS

A comprehensive review of methodologies for permafrost
modeling is presented in [28]. One class of models [29]
integrates climatic parameters with variations in snow cover,
vegetation, and soil properties. These models demonstrate
strong alignment with observational data and have been
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effectively applied in various contexts. For example, [9]
employed such a model to evaluate geocryological risks
arising from permafrost thawing. These physics-based mod-
els explicitly account for the thermophysical processes
governing permafrost stability, providing a crucial baseline
for assessing permafrost change.

Similarly, this approach simulates permafrost temperatures
and the depth of the seasonally thawed layer [30]. Their
study employed kriging to interpolate values over a spatial
grid with a resolution of 0.25°. Predictive calculations are
based on climate change projections from six Earth System
Models in the CMIP5 (Coupled Model Intercomparison
Project Phase 5), under the RCP 8.5 scenario, which assumes
continued greenhouse gas emissions growth. Streletskiy
et al. validate their results by comparing present-period
predictions (2005-2015) with observational datasets before
projecting changes for the mid-21st century (2050-2059).
Unfortunately, the long-term stability of such extrapolations
remains uncertain, as permafrost dynamics may be influenced
by processes not fully captured in equilibrium-based models.

A different numerical approach based on statistical models
is described in [14]. Hjort et al. calculated variables such
as temperature, precipitation, organic carbon content, soil
type, water body distribution, solar radiation, and topography
for each point on a spatial grid. These variables, derived
from CMIP5 climate scenarios, depend on greenhouse gas
concentrations. Three IPCC scenarios (RCP 2.6, RCP 4.5,
and RCP 8.5) are used to model these variables under
different emissions pathways. The study employs four statis-
tical models—generalized linear model (GLM), generalized
additive model (GAM), random forest (RF), and generalized
boosting model (GBM)—along with their ensemble. The
resulting analysis produces a map of soil temperature and
the thickness of the seasonally thawed layer. The prediction
uncertainty of the ensemble model is estimated at £0.8°C for
soil temperature and 0.4 m for the thawed layer thickness,
highlighting both the potential and the limitations of purely
statistical approaches in permafrost modeling.

A similar approach is explored in [31], with a greater
emphasis on modeling procedures. This study reports root
mean squared errors (RMSEs) of 0.5 m for active layer
thickness (ALT) and 1.6A°C for mean annual ground
temperature (MAGT), evaluating on hindcast data for past
periods. To date, this represents the highest reported pre-
cision in permafrost thaw prediction. However, a model
with a 0.5 m prediction error remains insufficient for
ensuring the stability and safety of infrastructure built over
permafrost.

Recent results in [32] highlight the limitations of conven-
tional machine learning methods in predicting environmental
processes, including permafrost thaw, at high latitudes, par-
ticularly concerning carbon cycle balances. These findings
suggest that empirical machine learning models, if not
properly constrained by physical principles, may struggle
with extrapolation to future climate scenarios beyond the
training data distribution.
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B. PHYSICS-INFORMED MODELING

In this study, we focus on incorporating the Kudryavtsev
equilibrium model [27], [29], [33] into machine learning.
Note that other models can be integrated into machine
learning in a similar manner.

Equilibrium models suggest that the mean annual ground
temperature (MAGT) is in balance with atmospheric param-
eters. These models have relatively low data requirements,
often relying on mean monthly temperature and precipitation
data as climate forcing, along with a few parameters
characterizing soil thermal properties, snow, and vegetation.
The equilibrium model developed by Kudryavtsev is one of
the most successful examples [27]. With slight modifications,
this model has been applied in numerous subsequent
studies [9], [29], [30], [34], [35], [36].

Table 1 presents a comparative analysis of various models,
all of which are compatible with the physics-informed
machine learning (PIML) framework for permafrost degra-
dation proposed in this paper. For clarity, however, we focus
exclusively on the Kudryavtsev model in detail.

TABLE 1. Analytical/semi-analytical models for permafrost degradation
that can be incorporated in the PIML framework of this paper.

Model Predicts | Predicts PIML
ALT? MAGT? | compatible?
Kudryavtsev et al. [40] v N v
TTOP [41], [42] X v v
Anisimov & Nelson [43] v X v
Jafarov et al. [44] v v v
Lunardini N-Factor [45] X v v
Ling & Zhang [46] v X v
Romanovsky & Osterkamp [47] v v v
Zhang et al. [48] v v v

Among the models listed in Table 1, we chose the
Kudryavtsev model due to its well-established empirical
grounding, analytical tractability, and compatibility with
limited-input datasets. Unlike more complex transient models
that often require detailed subsurface profiles and long-term
calibration, the Kudryavtsev model can be robustly applied
using readily available surface climate data. This makes it a
practical and scalable choice for integration into a machine
learning framework, particularly when operating under data
scarcity constraints.

Despite recent improvements in MAGT and ALT data
availability through a dedicated web portal [45], per-
mafrost modeling remains constrained by limited data. More
advanced transient models are often impractical due to miss-
ing input parameters and the inability to properly calibrate
them. Given these challenges, we use the Kudryavtsev model
not as a stand-alone predictor but as a feature generator within
the PIML framework, ensuring that key physical processes
are embedded in machine learning representations.

The Kudryavtsev model is based on a numerical solution
of a nonlinear parabolic equation [27] and accounts for
snow, vegetation, soil composition, and variable thermal
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properties [33], [35]. It has been extensively validated against
empirical observations [33].

In this model, each grid element (a pixel on the map)
is associated with observable variables such as snow cover,
vegetation, and soil characteristics. The model outputs
ground temperature and active layer thickness. For this study,
we used a modified version from [29]. A detailed description
can be found in [28] and [29].

The model takes monthly air temperature and precipitation
as climate inputs, along with various soil parameters. Instead
of relying on a single model setup, we generate an ensemble
of Kudryavtsev model outputs by varying key soil properties,
specifically soil type (e.g., clay, loam, peat), while keeping
snow cover and organic layer depth constant. This ensemble
approach captures a range of plausible permafrost conditions,
reducing sensitivity to single assumptions.

Snow cover is held constant to account for its dual role
in ground heat exchange. It reflects solar radiation, helping
to keep the ground cooler, while also acting as an insulator
that slows both winter heat loss and summer heat gain,
stabilizing temperature fluctuations. The organic layer depth
is determined by the dominant vegetation type in each area.

IIl. MATERIALS AND METHODS

The core idea of physics-informed machine learning for
permafrost thaw prediction is to enhance accuracy by
combining advanced data-driven methods with physics-based
models. Rather than using equilibrium models as standalone
predictors, we incorporate their outputs as additional physical
features in machine learning. This approach maintains con-
sistency with known permafrost dynamics while improving
the predictive power of data-driven techniques, enabling
high-fidelity thaw predictions even with limited observational
data.

The Circumpolar Active Layer Monitoring (CALM) pro-
gram provides data from 265 sites across 15 countries in the
Northern Hemisphere [46]. Figure 1 shows the locations of
these sites. To assess permafrost degradation risks, we model
seasonal thaw depth across the entire grid.

We trained several machine learning models using CALM
site data. As often happens for data-limited problems, simple
models like gradient boosting demonstrate substantially
better performance than complex and highly non-linear
methods. Inputs included dynamic climate parameters, static
soil and vegetation data, and physical features derived from
an ensemble of Kudryavtsev model outputs with varying
parameter settings. Figure 2 illustrates the model workflow.
The process begins by preprocessing input data, feeding it
into the Kudryavtsev model [27], and using its outputs as
additional features for the machine learning model.

A. PHYSICS-BASED MODEL

Physics-based models can be considered as coarse-grained
approximators providing qualitative rather than quantitative
description for permafrost thawing. Although even quali-
tative physics-based models can assist machine learning,
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leading to a proper feature space providing more informative
process description thus facilitating prediction with machine
learning methods.

The Kudryavtsev model, describing permafrost thaw from
a heat flow equation perspective, is a vital example of the
latter. The model is a solution to the equation of heat flow
theory [28], described by (1).

8T 8T

st * 872 %
where C is the effective volumetric heat capacity [J m™3], T
is temperature [K], ¢ is time, A is thermal conductivity [W
m~'K~1] and z is the underground depth [m]. The thermal
conductivity and the soil heat capacity are known for both
train and test data.

The surface temperature can be considered as a
leading-term approximation of the Fourier series:

2t
nm%n+mw%;ﬂ, @

where T is a constant since climate change impact within
a few years is considered being insignificant. The principal
period P for temperature oscillations is one year, and A; is an
unknown (location-dependent) oscillation amplitude.

Based on the first principles, we assume that the depth of
the oscillation magnitude decreases exponentially following
the linear ordinary differential equation (ODE)

dA(z)
& —B, A(x) =Asexp(—Bz), B>0. (3)

Finally, since the temperature changes do not propagate
immediately, we assume linear phase decay with the depth
grow, which results in:

2t
T(z,t) =Ts + Asexp(—pz) cos (T — yz) )

Substituting the above Egs. (2) — (4) in (1) and matching
the derivatives we get

e 5
B=v= °p Am (z, 1) =Ts. )

Notice that the MAGT we recover is simply 7. The heat
conservation law also implies that in the Kydryavtsev model
the mean temperature averaged over a year does not change
with depth.

Now, we derive the active layer thickness (ALT) as the
solution to

_pz 2mt*
0 =T (zmhaw, 1) = Ts + Agexp™ " cos P — BZhaw

Q)

where 1* stands for the warmest time of the year where
cos(-) = 1. Thus, at the active layer thickness, Zs4,,, We have

cpP T
T + Ag exp(—Bzihaw) = 0 = Zhaw = In{ - . (N
ATT Ay
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1) PHYSICS-BASED MODEL ASSISTANCE TO MACHINE
LEARNING
The Kudryavtsev model essentially asserts that key per-
mafrost parameters, MAGT and ALT, can be approximated as
functions of annual average temperatures and their variations.
These variations can be estimated using historical reanalysis
data (ERA) and climate projections.

Specifically:

e Mean Annual Ground Temperature (MAGT), Tj:

Defined as the average daily temperature over a year.
o Active Layer Thickness (ALT), zihaw given by

cp T,
=~ m(-=), 8
Zthaw e n ( As) (8)

where Ay is a robust estimate of the difference between
maximum and minimum annual temperatures, Eq. (3).
This study demonstrates how incorporating the Kudryavt-
sev model as an additional feature set enhances machine
learning-based permafrost thaw predictions. This integration
is particularly valuable given the limited availability of
permafrost observational data across both space and time.
Moreover, more advanced models [28], [47], [48] could be
integrated similarly to further refine prediction accuracy.

B. MACHINE LEARNING

To integrate physical constraints into our prediction frame-
work, we first ran the Kudryavtsev model with various
parameter initializations to generate ALT and MAGT values
under different soil and climate conditions. These values are
then used as inputs to a Machine Learning (ML) model along
with other data, as described in the Data section. The ML
model is subsequently trained and evaluated using historical
observations from the CALM and TSP stations.

We use gridded climate data from an ensemble of CMIP6
Earth System Models to obtain predictions for the periods
2010-2015 and 2040-2060. The ML model is trained on
present-day conditions and then applied to infer future
permafrost states based on projected climate scenarios.

In the empirical part, we consider the two most notable
greenhouse gas emission scenarios defined by the Shared
Socioeconomic Pathways (SSP). SSP scenarios account for
the impact of climate change on societal and economic
development [49].

TABLE 2. Input data.

Input data Parameters Units Period
IPA Permafrost Map | Permafrost type Categorical N/A
swamp Swamp coverage % N/A
CEDA Temperatures, precipitation | °C, mm 1901-2020
WorldClim Temperature, precipitation °C, mm 1960-2018
(historical)
CALM Thaw depth cm 1969-2021
(partially)
WorldClim/CMIP6 Temperature, precipitation °C, mm 2006-2100
vegetation Type of vegetation Categorical | N/A
GTNP-TSP Temperature, °C, cm 1901-2020
zero-amplitude depth
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C. DATA

The spatial resolution for historical data is 0.5 angular
degrees, except for the GTNP-ALT dataset (see description
below). For future predictions and historical assessments,
we used high-resolution temperature and precipitation data
from WorldClim [50], [51]. The temporal resolution of time
series data ranged from 1 month to 1 year. We aggregate
values of interest for each pixel using the datasets detailed
below.

1) CEDA

Various climate variables [52], including cloud cover (aver-
age sky fraction obscured by clouds), daily temperature
range, proportion of time with subzero temperatures, pre-
cipitation, monthly average daily minimum and maximum
temperatures, monthly mean temperature, and proportion of
time with precipitation. The temporal resolution is 1 month.

2) CALM

Thaw depth statistics [45] collected at CALM sites (Figure 1).
Each data point includes eight entries: seven describe thaw
depth characteristics (average, median, minimum, maximum,
25th percentile, 75th percentile, and standard deviation),
and one represents the distance to the nearest CALM site.
Measurements are taken on a 1 km x 1 km grid with
100-m steps (121 total points), though some data is missing
or irregularly recorded. To standardize spatial resolution
(0.5 angular degrees), we assigned each grid point to the
nearest CALM site, with a maximum mapping distance of
200 km (four cases). The temporal resolution is 1 year.
Missing values were ignored and not used for training or
testing the approach.

3) WorldClim (HISTORICAL)

High-resolution historical climatic data is projected from
CRU-TS-4.03 using WorldClim 2.1 for bias correction [50].
The data cover 1960-2018 with an original spatial resolution
of 2.5 minutes (~21 km?), reprojected to a 0.5-angular-
degree grid. The temporal resolution is 1 month.

4) 1PA

Permafrost distribution map [53], rasterized from a vector
format to 0.5 angular degrees for consistency with other
datasets (Figure 1). These data are time-invariant.

5) WorldClim (CMIP6)

Climate projections from the CanESMS5 model, including
air temperature (mean, minimum, and maximum in °C) and
precipitation (mm). The temporal resolution is 1 month [54].

6) SWAMP

Provided by Professor Oleg Anisimov, this dataset represents
the percentage of wetlands for each grid point (Figure 2).
These data are time-invariant.
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FIGURE 1. Left: distribution of permafrost types according to the IPA permafrost map with CALM sites and TSP boreholes. Center: wetland
portion in each pixel. Right: vegetation portion in each pixel.

1. Input Data

Historic data:
- CEDA: minimal and maximal average
monthly temperature and monthly

—b

Results of an ensemble of Kudryavtsev
models with various parameters

- Predicted values of ALT and MAGT for
historical period of 2010-2015 on the
whole permafrost region

precipitation
- High resolution WorldClim historical
climate data

Stationary:
- IPA Permafrost Map >
- Vegetation Map and estimates of
organic layer depths

- Swamp map

3. Machine Learning Model

CatBoost regressor trained on the —
results of Kudryavtsev model ensemble
and other data as inputs

- Predicted ALT and MAGT for the future
period 2040-2060
- Estimated uncertainty of predictions

Future:
- CMIP6: predicted min and max

average monthly temperature and
monthly for SSP245 and SSP585
scenarios

FIGURE 2. Model flowchart. Graphical summary of the methods section.

7) VEGETATION

Also provided by Professor Oleg Anisimov, this dataset
classifies landscape types and biotopes (Figure 1). These data
are time-invariant.

8) GTNP-TSP

Zero Annual Amplitude (ZAA) depth—where annual tem-
perature variation is below 0.1°C [55]. These data describe
permafrost thermal conditions measured at TSP boreholes
(Figure 1). Since ZAA depth is not explicitly reported,
we manually determined it for each weather station and year
using GTNP data [45]. Stations lacking sufficient data for
ZAA estimation are eliminated. The final dataset includes
both ZAA temperature and depth, projected onto a regular
grid to create a spatial map.

D. DATA FOR MODELING

Let P be the domain representing the part of the Earth’s
surface underlain by permafrost. We project this two-
dimensional, locally continuous surface onto a discrete grid,
P, parameterized by two angular coordinates, i and j, with
a step size of 0.5 degrees. For each grid cell at coordinates
(i, j), we have observations of various features, P, recorded
at different time steps, t, where the temporal resolution is
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1 month. Thus, we define P D> P = {f’fj} where each
observation is indexed by both space and time.

The input data P for our model consists of dynamic
climate variables (temperature and precipitation) and static
parameters (swampiness, biotopes, and permafrost type):

P;Z{lij taXl§7lea Yl;} (9)

where i, j are the latitude and longitude of the pixel center;
T is the year of observation; Xi’- contains 12 monthly
values of climate variables (e.g., minimum and maximum
temperatures, monthly precipitation); X;; includes stationary
parameters that do not vary over time (e.g., swampiness,
biotopes, permafrost type); Y; = {alt, magt};} represents
the observed ALT and MAGT values.

Our model takes X;; and Xt; as inputs. The key variables in
this study, alt} and magt}, are only recorded for a subset of
the full grid P. Consequently, we used this subset for training
and validation.

E. IMPLEMENTATION

Our model incorporates both observed meteorological data
and outputs from the Kudryavtsev model (see Fig. 2).
The input data consist of 12 monthly measurements of
temperature and precipitation, Xi]’- , along with soil properties
such as organic layer thickness and soil type, X;;.
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observed ALT values observed MAGT values

FIGURE 3. Left: dependency of the error of the model on the test set alterations with dropping top k % (rejection ratio) values with the highest predictive
uncertainty. Right: histograms of the number of observed ALT and MAGT values for a given year. The orange bars indicate the years used for the test.

TABLE 3. Mean annual ground temperatures (MAGT; left) and active layer thickness (ALT; right) prediction errors on the proposed training-testing splits.
Each model is trained with 80% of the data and tested over the remaining. The average of five estimations for each model configuration is given. “Kudr."

denotes the Kudryavtsev model results. The best results are in bold.

RMSE RZ X 100 RMSE RZ (x 100)
Model Factors Train Test Train Test Model Factors Train Test Train Test
CatBoost All data 0.72 4+ .11 1.08 £ .02 89+3 5341 CatBoost All data 5.65 + .90 25.53 + 40 98 + 1 62+ 1
Kudr. (ALT + MAGT) 1.04 £ .02 1.26 £ .02 77+2 37+2 Kudr. (ALT + MAGT) 27324 .55 3239+ .17 61 +2 38+t1
Kudr. (ALT) 1.27 £ .03 1.32 4 .01 67 £2 30+ 1 Kudr. (ALT) 25.71 £ 1.69 36.71 & .13 65+5 21+ 1
Kudr. (MAGT) 1.06 £ .08 122 4 .04 76 £ 3 4144 Kudr. (MAGT) 2741 4+ 1.48 33.62 + .54 60 £+ 4 3342
Only climate data 0.64 + .06 1.14 £ .02 91 +2 48 +2 Only climate data 9.96 + 1.63 28.57 + 47 95 42 52+2
Elastic Net All data 124 £ .02 127 £ .03 68 E 1 35£3 Elastic Net All data 29.80 & 31 3779 £ .18 53£1 16+1
Kudr. (ALT + MAGT) 1.50 + .02 1.25 + .01 5341 3841 Kudr. (ALT + MAGT) 38.93 + .39 40.17 £ .18 20+ 1 541
Kudr. (ALT) 1.80 4 .04 1.50 £ .02 3241 10+3 Kudr. (ALT) 39.79 + .35 40.80 + .39 17+1 242
Kudr. (MAGT) 1.61 £ .02 1.40 £ .01 46 £ 1 21+ 1 Kudr. (MAGT) 39.48 £ .40 39.96 4 .18 1841 6+1
Only climate data 133 4+.02 1.55 4+ .04 63+1 4+6 Only climate data 31.14 + 28 38.48 + 27 4941 1341
LinearRegression All data 1.18 £+ .02 141 £+ .07 71+1 20+38 LinearRegression All data 28.48 + .23 36.02 + 23 5T+1 24+1
Kudr. (ALT + MAGT) 142 £ .02 1.18 £ .02 58+2 4242 Kudr. (ALT + MAGT) 36.43 £ .27 39.76 + 38 30+1 7+2
Kudr. (ALT) 1.55 + .03 1.19 £ 01 50+2 4 +1 Kudr. (ALT) 39.13 + .38 40.76 + .15 2041 241
Kudr. (MAGT) 1.52 4 .02 1.17 £ .01 5241 4541 Kudr. (MAGT) 38.23 4+ .36 39.62 + .33 23+1 7+2
Only climate data 1.29 + .02 1.64 + .05 65+ 1 747 Only climate data 31.07 + .28 38.93 + .28 49+ 1 1141
NeuralNetwork All data 1.06 &+ .07 1.56 + .13 77+3 2+ 16 NeuralNetwork All data 19.21 £ 1.30 29.53 £ .60 81 £3 49 £2
Kudr. (ALT + MAGT) 141 £+ .03 1.39 £+ .05 59+2 2345 Kudr. (ALT + MAGT) 33.50 &+ .62 39.31 + 1.88 4143 949
Kudr. (ALT) 1.50 & .09 1.34 £ .01 53+4 2+ 1 Kudr. (ALT) 38.65 £ 48 3835 + .31 2141 1341
Kudr. (MAGT) 145 £+ .05 135+ .11 57+2 27+ 11 Kudr. (MAGT) 31.13 + 94 36.73 + 28 4943 21+1
Only climate data 1.05 £ .10 1.40 £ .23 77+ 4 19 £ 26 Only climate data 17.81 + 2.89 3230 £ 1.14 83+ 5 38 +4
RandomForest All data 0.38 £ .01 1.16 £ .03 97 L1 47E£2 RandomForest All data 7.36 £ .12 2957 £ 32 97 E1 FRE]
Kudr. (ALT + MAGT) 045 = .02 1244 .04 9641 38 +4 Kudr. (ALT + MAGT) 1043 + .16 3453 + 26 9441 30+ 1
Kudr. (ALT) 0.51 4+ .02 141 4 .04 94+ 1 21+5 Kudr. (ALT) 12.89 + .12 37.05 + .16 9141 1941
Kudr. (MAGT) 0.48 £ .01 127 + .04 95+ 1 35+ 4 Kudr. (MAGT) 11.58 £+ .28 35.03 4 44 93+ 1 2842
Only climate data 0.37 + 01 1.28 4 .08 9741 35+38 Only climate data 7.62 £ .12 31.70 + 28 9741 4141

To parameterize the Kudryavtsev model, we varied
soil type configurations. The model initialization includes
parameters for four soil types: sand, loam, clay, and peat.
The dominant soil type in permafrost regions is clay,
which shares similar physicochemical properties with loam.
Therefore, we obtained model predictions for both soil
types. Additionally, to account for hydrological variability,
we generated predictions for both dry and wet soil conditions.
For swamp-associated locations, we computed a weighted
average of the regular soil type and peat predictions based on
the swamp dataset (see Fig. 1). As aresult, each pixel had four
pairs of ALT and MAGT values to initialize the Kudryavtsev
model.

Our machine learning model finally predicts altl.; and
magtl-]’- by leveraging both environmental predictors, 73; €
P, and the Kudryavtsev model outputs from the previous
step.

To evaluate performance and select the most suitable
model, we experimented with various machine learning
techniques, including linear [56], multi-layer perceptron [57],
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random forest elastic net and CatBoost
regressions [60]

Based on prediction errors, we selected CatBoost Regres-
sor [60] as the most reliable method. This model is
a supervised learning meta-algorithm that constructs an
ensemble of decision trees, reducing bias and variance to
improve prediction quality. It offers built-in paralleliza-
tion, enabling fast training and inference on a standard
laptop.

For uncertainty estimation, we used built-in algorithms
in CatBoost. Specifically, we trained the model with a
specialized loss function that enables uncertainty estimation
via virtual ensembles, following the approach in [61].
Additionally, we provided rejection curves for estimated
uncertainty values by systematically removing data points
with the highest predictive uncertainty, see Fig. 3 for details.
For engineering use, the 95 % upper ALT bound may be read
as a conservative foundation depth.

The goal of our model is to provide robust predictions
of permafrost degradation under future climate scenarios.

[58], [591,
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To achieve this, we replace historical climate data with pro- reflect the latest climate pathways. Consequently, the
jected temperature and precipitation from the CMIP6 Earth Kudryavtsev model outputs are updated using CMIP6-based
System Model ensemble, ensuring that future projections forcing data.
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IV. RESULTS

In total, we used 2,729 ALT and 961 MAGT data points
collected between 1990 and 2010, covering areas of 364,000
km? and 322,000 km?, respectively. These data points
correspond to map pixels that contain or neighbor CALM
sites and/or TSP boreholes.

To evaluate model performance and assess its ability to
predict future values, we divided the dataset into training
and test subsets. The training set included data up to 2013,
while the test set covered the period from 2013 to 2020.
This temporal split ensures that the model is tested on a
distinct time period, allowing us to assess its generalization
to new conditions. Figure 3 illustrates an example of the
training-testing split used. Additionally, we applied the
K-fold algorithm to further partition the training set into five
folds, each containing 80% of randomly selected data points.

Table 3 presents prediction errors for different models
constructed using four sets of climate variables, with and
without the Kudryavtsev model outputs. We evaluate model
performance using two key metrics: root mean square error
(RMSE) [62] and the coefficient of determination (R2) [63].

The RMSE for the Kudryavtsev model alone (without
additional climate data) is 32.39 4+ 0.17 cm for ALT and
1.26 + 0.02 for MAGT. While this serves as a strong
baseline, it highlights the limitations of using an equilibrium
model in isolation. Incorporating all available climate and
environmental data into our physics-informed ML framework
significantly improved test RMSE, reducing it to 25.53 £
0.40 cm for ALT and 1.08 £ 0.02 for MAGT. These results
demonstrate the added value of combining physical models
with machine learning.

Figure 4 (a,d) and 5 (a,d) shows the predicted values
by the CatBoost model, which is trained with all factors
included versus the actual active layer thickness computed
using all climatic data in the “Data” section. Although our
model demonstrates excellent predictive power, it slightly
underestimates the ALT.

Figures 4 (b,c,e,f) and 5 (b,c,e,f) demonstrate the predicted
active layer thickness and temperature of the soil at the
zero-amplitude level for 2050 (under the CMIP 6 SSP245
scenario) and as a comparison to 2010.

While direct benchmarking against prior permafrost mod-
els is limited due to variations in input data and spatial scales,
we note that our model achieves competitive or superior
performance. For instance, the RMSE of 25.5 cm for ALT
prediction compares favorably with the +40 cm reported by
Hjort et al. [4], [14] and the 0.5 m error [31]. These results
highlight the efficacy of our physics-informed approach,
especially when evaluated on an independent test period.

V. CONCLUSION

This study presents a physics-informed machine learn-
ing framework for predicting permafrost degradation with
improved accuracy and robustness. By integrating the
physics-based model (Kudryavtsev model in particular) into
data-driven predictions, we overcome the limitations of
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purely empirical or physics-only approaches. Our model
demonstrates strong generalization to future climate sce-
narios and outperforms existing methods in key metrics.
This approach not only improves predictive fidelity, but also
provides a scalable tool for long-term risk assessment in
Arctic infrastructure planning and climate policy. Next steps
for the research could include assimilating higher-resolution
snow, vegetation, and soil-property datasets, and evaluating
alternative equilibrium thaw-depth formulations beyond the
Kudryavtsev model within the same hybrid architecture.
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